

REB-3310 Operational Manual

Version 1.0 2005/4/7

This document contains information highly confidential to RoyalTek Company LTD (RoyalTek). It is provided for the sole purpose of the business discussions between supplier and RoyalTek and is covered under the terms of the applicable Non-Disclosure Agreements. Disclosure of this information to other parties is prohibited without the written consent of RoyalTek.

Prepared by RoyalTek Company LTD.

8F,256 Yang Guang Street, Neihu Chiu,Taipei, Taiwan, R.O.C. TEL: 886-2-77215000 FAX: 886-2-77215666 <u>http://www.royaltek.com/contact</u>

RoyalTek GPS Module: REB-3310 Operational Manual

INTRODUCTION	3
PRODUCT FEATURES	3
PRODUCT APPLICATIONS	3
PRODUCT PICTURE	4
REB-3310 SERIES SYSTEM BLOCK DIAGRAM	6
REB-3310 TECHNIQUE SPECIFICATION	. 7
APPLICATION CIRCUIT	8
RECOMMENDED LAYOUT PAD	. 9
GPS ANTENNA SPECIFICATION	
MECHANICAL LAYOUT	.11
HARDWARE INTERFACE	.12
DEFINITION OF PIN ASSIGNMENT	.13
SOFTWARE INTERFACE	15
NMEA V3.0 PROTOCOL	15
GPS RECEIVER USER'S TIPS	.20
MTBF ESTIMATION	21
PACKAGE SPECIFICATION AND ORDER INFORMATION	.21
CONTACT INFORMATION SECTION	.21

RoyalTek GPS Module: REB-3310 Operational Manual

Introduction

RoyalTek REB-3310 low power and small form factor board is the newest generation of RoyalTek GPS Receiver. The GPS receiver is powered by SiRF Star III technology and RoyalTek proprietary navigation algorithm that providing you more stable navigation data. The smallest form factor and miniature design is the best choice to be embedded in a portable device like PDA, personal position and navigation like personal locator, speed camera detector and vehicle locator. The excellent sensitivity of REB-3310 gets the great performance when going though the urban canyon and foliage.

Product Features

- ♦ 20 parallel channels
- ♦ Extreme fast TTFF at low signal level
- ♦ Operable from 3.3V/72mA continuous mode.
- ♦ SMT type with stamp holes
- Pin reserved for Backup battery and RF connector
- ♦ TCXO design
- ♦ 7 I/O lines(GPIO) available to connect
- ♦ 0.1 second reacquisition time
- ♦ Small form factor.
- ♦ NMEA-0183 compliant protocol/custom protocol.
- ♦ Enhanced algorithm for navigation stability
- ♦ Excellent sensitive for urban canyon and foliage environments.
- ♦ SBAS (WAAS, EGNOS and MSAS) support
- ♦ Auto recovery while RTC crashes
- ♦ Trickle power supported
- ♦ ARM 7 CPU core accessible.
- \diamond 4/8/16Mbits Flash Memory.

Product applications

- ♦ Automotive navigation
- ♦ Personal positioning and navigation
- ♦ Marine navigation
- ♦ Timing application

Product Picture

REB-3310

REB-3310 Interface Board

	5HO 0-AH6 66 3MD
134	
	• • • • • • • • • • •

The interface board

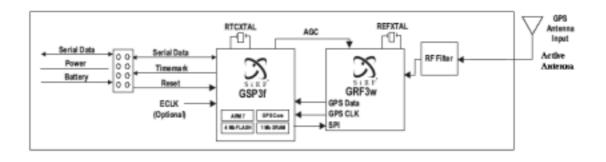
PIN	REB-3300	REB-3310
1	VCC	VCC_IN
2	GND	GND
3	Boot select	BOOT
4	RXA	RXA
5	ТХА	ТХА
6	ТХВ	ТХВ
7	RXB	RXB
8	GPIO_3	GPIO_14
9	RF_ON	RF_ON
10	GND	GND
11	GND_A	GND_A
12	GND_A	GND_A
13	GND_A	GND_A

RoyalTek 鼎天國際股份有限公司

GND_A	GND_A	
GND_A	GND_A	
GND_A	GND_A	
RF_IN	RF_IN	
GND_A	GND_A	
V_ANT_IN	V_ANT	
VCC_RF	VCC_RF	
V_BAT	Battery	
Reset	IC_RESET	
GPIO_10	GPIO_10	
GPIO_6	GPIO_1	
GPIO_5	GPIO_5	
GPIO_7	GPIO_0	
GPIO_13	GPIO_13	
GPIO_15	GPIO_15	
PPS	TIMEMARK	
GND	GND	
	GND_A GND_A RF_IN GND_A V_ANT_IN VCC_RF V_BAT Reset GPIO_10 GPIO_5 GPIO_7 GPIO_13 GPIO_15 PPS	

RoyalTek Evaluation Kit REV-2000 for REB-3310

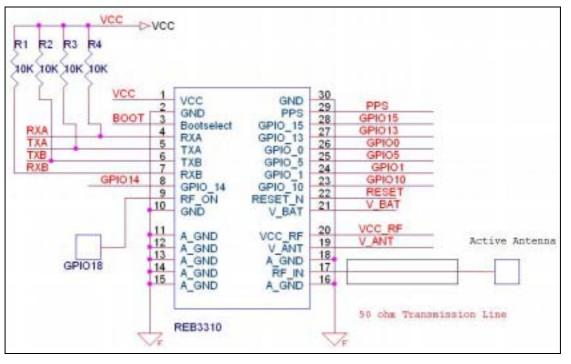
(Please refer to RoyalTek Evaluation Kit REV-2000 for REB-3310 Operational Manual for more information)



REB-3310 Series System Block Diagram

REB-3310 engine board consists of SiRF star III chipset technology; 4/8/16Mbits flash memory, and proprietary software. The system is described as follows.

- a. Support external active patch antenna
- b. Support 4/8/16 Mega bits flash memory
- c. 30 I/O pins


REB-3310 Technique Specification

Impedance : 50

No	Function	Specification			
GPS re	eceiver				
1	Chipset	SiRF Star III			
2	Frequency	L1 1575.42MHz.			
3	Code	C.A. Code.			
4	Channels	20			
5	Sensitivity (Tracking)	-159dBm.			
6	Cold start	37 sec			
7	Warm start	35 sec			
8	Hot start	1 sec			
9	Reacquisition	0.1sec typical			
10	Position accuracy	25m CEP.			
11	Maximum altitude	18000 m			
12	Maximum velocity	514 m/s			
13	Trickle power mode	Duty cycle 34%. (Variable)			
		Default: disable (option: enable)			
14	Update rate	Continuous operation: 1Hz			
15	Testability	It shall be able to be tested by SiRF test mode 4 and single			
channel simulator.					
16	Protocol setup	It shall store the protocol setup in the SRAM memory.			
17	DGPS	1.WAAS, EGNOS			
		2.RTCM protocol			
Interfa					
18	I/O Pin	30pin stamp holes			
	nical requirements				
19	Weight	3.5g			
Power	consumption				
20	Vcc	DC 3.3 ±5%			
21	Current	REB-3310:			
		Current 72mA@3.3V typical (w/o ext. antenna)			
22	Trickle power mode	Average current 39mA@3.3V typical (w/o ext. Antenna)			
Enviror	nment				
23	Operating temperature	-30 ~ 85			
24	Humidity	95%			
25	Interface Protocol	1. NMEA 0183 ver 3.0, GGA, GSA, RMC and GSV once per			
		2. SiRF Protocol			
		3. 4800 bps, 8 data bits, no parity, 1 stop bits			

Application Circuit

(1) Ground Planes:

REB-3310 GPS receiver needs two different ground planes. The GND_A pin(11,

12、13、14、15、16、18) shall be connect to analog ground.

The GND pin(2, 10, 30) connect to digital ground.

(2) Serial Interface:

The Serial interface pin(RXA, TX1, TXB, RXB) is recommended to pull up(10K). It can increase the stability of serial data.

(3) Backup Battery:

It's recommended to connect a backup battery to V_BAT.

In order to enable the warm and hot start features of the GPS receiver. If you don't intend to use a backup battery, connect this pin to GND or open.

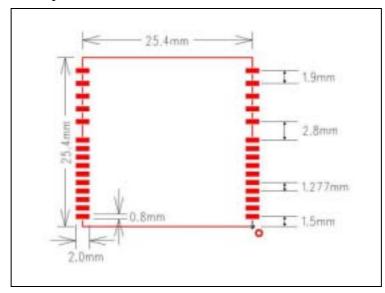
If you use backup battery, shall need to add a bypassing capacitor (10uF) at V_bat trace. It can reduce noise and increase the stability.

(4) Antenna:

Connecting to the antenna has to be routed on the PCB. The transmission line must to controlled impedance to connect RF_IN to the antenna or antenna connector of your choice.

(5) Active antenna bias voltage:

The Vcc_RF pin (pin 20) is providing voltage 3.0V. If you use active antenna, you can connect this pin to V_ANT_IN pin (pin 19) to provide bias voltage of active


antenna. The bias voltage will through RF_IN pin to provide active antenna bias voltage from Vcc_RF pin.

If your bias voltage of active antenna isn't 3.0V, you can input bias voltage to V_ANT_IN pin (pin 19). And input bias voltage of you need. It can open if you use passive antenna. The input bias voltage will through RF_IN pin to provide active antenna bias voltage from V_ANT_IN pin.

The maximum power consumption of active antenna is about 100mW

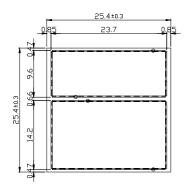
(6) Power:

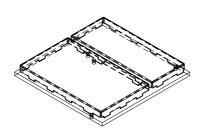
Connect Vcc pin to DC 3.3V.The power supply must add bypassing capacitor (10uF and 1uF). It can reduce the Noise from power supply and increase power stability.

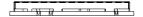
Recommended layout PAD

GPS Antenna Specification (Recommendation)

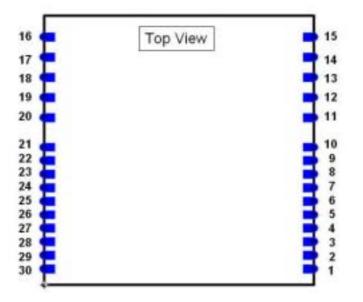
- ♦ Active patch antenna
- ♦ Receiving freq. 1575.42 +/-1.032MHz
- ♦ Polarization RHCP
- ♦ Output impedance 50 Ohm


♦ 2 stage LNA


LNA's gain 20dB and 26dB, noise figure 2.0dB


♦ Connection: surface mounted on main PCB

Mechanical Layout



Hardware interface

Definition of Pin assignment

Pin #	Signal Name	I/O	Description	Characteristics	
1	VCC	I	DC Supply Voltage	DC +3.3V±5%	
			input		
2	GND	G	Ground	Digital Reference Ground	
3	Boot select	I	Boot mode	$V_{IH} \ge 0.7V * VCC$ $V_{IL} \le 0.3V * VCC$	
4	RXA	Ι	Serial port A	$V_{IH} \ge 0.7V * VCC$ $V_{IL} \le 0.3V * VCC$	
5	ТХА	0	Serial port A	$V_{OH} \ge 2.4V$ $V_{OL} \le 0.4V$	
6	ТХВ	0	Serial port B	$V_{OH} \ge 2.4V$ $V_{OL} \le 0.4V$	
7	RXB	I	Serial port B	$V_{IH} \ge 0.7V * VCC$ $V_{IL} \le 0.3V * VCC$	
8	GPIO14	I/O	General –purpose I/O	$V_{IH} \ge 0.7V * VCC$ $V_{IL} \le 0.3V * VCC$	
				$V_{OH} \ge 2.4V$ $V_{OL} \le 0.4V$	
9	RF_ON	0	Indicates power state of RF part	$V_{OH} = 2.85V \qquad \qquad V_{OL} = 0V$	
10	GND	G	Digital Ground	Digital Reference Ground	
11	GND_A	G	Analog Ground	Analog Reference Ground	
16					
17	RF_IN	Ι	GPS Signal input	50 Ω @1.57542GHz	
18	GND_A	G	Analog Ground	Analog Reference Ground	
19	V_ANT_IN	I	Active Antenna Bias	Receiving DC power supply for active antenna	
		-	voltage	bias.	
20	VCC_RF	0	Supply Antenna Bias voltage	$V_o = 3.0V \pm 0.3$	
21	V_BAT	I	Backup voltage supply	DC + 2.6 ~ +3.6V	
	-			Current ≤10uA (w/o battery)	

鼎天國	際股	份有	限公司

RoyalTek

22	Reset	I	Reset (Active low)	$V_{III} > 2.3V V_{IL} < 0.8V$
23	GPIO10	I/O	General purpose I/O	$V_{IH} \ge 0.7V * VCC$ $V_{IL} \le 0.3V * VCC$
				$V_{OH} \ge 2.4V$ $V_{OL} \le 0.4V$
24	GPIO1	I/O	General purpose I/O	$V_{IH} \ge 0.7V * VCC$ $V_{IL} \le 0.3V * VCC$
				$V_{OH} \ge 2.4V$ $V_{OL} \le 0.4V$
25	GPIO5	I/O	General purpose I/O	$V_{IH} \ge 0.7V * VCC$ $V_{IL} \le 0.3V * VCC$
				$V_{OH} \ge 2.4V$ $V_{OL} \le 0.4V$
26	GPIO0	I/O	General purpose I/O	$V_{IH} \ge 0.7V * VCC$ $V_{IL} \le 0.3V * VCC$
			(support continuous power mode only)	$V_{OH} \ge 2.4V$ $V_{OL} \le 0.4V$
27	GPIO13	I/O	General purpose I/O	$V_{IH} \ge 0.7V * VCC$ $V_{IL} \le 0.3V * VCC$
				$V_{OH} \ge 2.4V$ $V_{OL} \le 0.4V$
28	GPIO15	I/O	General purpose I/O	$V_{IH} \ge 0.7V * VCC$ $V_{IL} \le 0.3V * VCC$
				$V_{OH} \ge 2.4V \qquad \qquad V_{OL} \le 0.4V$
29	PPS	0	One pulse per second	$V_{OH} \ge 2.4V$ $V_{OL} \le 0.4V$
30	GND	G	Digital Ground	Digital Reference Ground

Definition of Pin assignment

VCC (+3.3V DC power Input)

This is the main DC power supply input pin. It provides voltage to module.

GND

GND provides the ground for digital part.

Boot select

Set this pin to high for programming flash.

RXA

This is the main receiver channel and is used to receive software commands to

the board from SIRFdemo software or from user written software.

PS: Pull up if not used.

RXB

This is the auxiliary receiving channel and is used to input differential

corrections to the board to enable DGPS navigation.

PS: Pull up if not used.

TXA

This is the main transmitting channel and is used to output navigation and measurement data to SiRFdemo or user written software.

TXB

For user's application (not currently used).

RF_ON

RoyalTek

鼎天國際股份有限公司

This pin indicates state of RF voltage.

RF_IN

This pin receiver signal of GPS analog .due to the RF characteristics of the signal the design has to certain criteria. The line on the PCB from the antenna(or antenna connector) has to be a controlled impedance line (Microstrip at 50).

V_ANT_IN

This pin is reserved an external DC power supply for active antenna.

If using 3.0V active antenna, pin 19 has to be connected to pin 20.

If using 3.3V or 12V active antenna, this pin has to be connected to 3.3V or 5V power supply.

VCC_RF

This pin provides DC voltage 3.0 for active antenna.

Reset

This pin provides an active-low reset input to the board. It causes the board to reset and start searching for satellites. If not utilized, it may be left open. PPS

This pin provides one pulse-per-second output from the board, which is synchronized to GPS time. This is not available in Trickle Power mode. Backup battery (V BAT)

This is the battery backup input that powers the SRAM and RTC when main power is removed. Typical current draw is 10uA.

Without an external backup battery or super cap, the TMP will execute a cold start after every power on. To achieve the faster start-up offered by a hot or warm start, either a battery backup must be connected or a super cap installed. To maximize battery lifetime, the battery voltage should not exceed the supply voltage and should be between 2.5V and 3.6V.

With the super cap (B1) installed, and after at least ten minutes of continuous operation, the data retention is about seven hours.

Note that even though all other components are rated at -30 to +85 deg C, a typical super cap is specified over a temperature range of -25 to +70 deg C and a typical rechargeable Lithium battery is over -20 to +70 deg C.

GPIO Functions

Several I/Os are connected to the digital interface connector for custom applications.

Software Interface

NMEA V3.0 Protocol

Its output signal level is TTL: 4800 bps (default), 8 bit data, 1 stop bit and no parity. It supports the following NMEA-0183

Messages: GGA, GLL, GSA, GSV, RMC and VTG.

NMEA Output Messages: the Engine board outputs the following messages as shown in Table 1:

NMEA Record	Description
GGA	Global positioning system fixed data
GLL	Geographic position – latitude / longitude
GSA	GNSS DOP and active satellites
GSV	GNSS satellites in view
RMC	Recommended minimum specific GNSS data
VTG	Course over ground and ground speed

Table 1 NMEA-0183 Output Messages

GGA-Global Positioning System Fixed Data

Table 2 contains the values of the following example:

\$GPGGA, 161229.487, 3723.2475, N, 12158.3416, W, 1, 07, 1.0, 9.0, M, , , ,0000*18

Name	Example	Units	Description
Message ID	\$GPGGA		GGA protocol header
UTC Position	161229.487		hhmmss.sss
Latitude	3723.2475		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.3416		Dddmm.mmmm
E/W Indicator	W		E=east or W=west
Position Fix Indicator	1		See Table 2-1
Satellites Used	07		Range 0 to 12
HDOP	1.0		Horizontal Dilution of Precision
MSL Altitude	9.0	meters	

Table 2 GGA Data Format

RoyalTek 鼎天國際股份有限公司

Units	М	meters	
Geoid Separation		meters	
Units	М	meters	
Age of Diff. Corr.		second	Null fields when DGPS is not
			used
Diff. Ref. Station ID	0000		
Checksum	*18		
< CR > < LF >			End of message termination

Table 3 Position Fix Indicators

Value	Description		
0	Fix not available or invalid		
1	GPS SPS Mode, fix valid		
2	Differential GPS, SPS Mode, fix valid		
3	GPS PPS Mode, fix valid		

GLL-Geographic Position –Latitude/Longitude

Table 3 contains the values of the following

Example: \$GPGLL, 3723.2475, N, 12158.3416, W, 161229.487, A*2C

Name	Example	Units	Description
Message ID	\$GPGLL		GLL protocol header
Latitude	3723.2475		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.3416		Dddmm.mmmm
E/W Indicator	W		E=east or W=west
UTC Position	161229.487		hhmmss.ss
Status	А		A=data valid or V=data not valid
Checksum	*2C		
< CR > < LF >			End of message termination

Table 3 GLL Data Format

RoyalTek 鼎天國際股份有限公司

GSA-GNSS DOP and Active Satellites

Table 4 contains the values of the following example:

\$GPGSA, A, 3, 07, 02, 26, 27, 09, 04, 15, , , , , , 1.8,1.0,1.5*33

Name	Example	Units	Description
Message ID	\$GPGSA		GSA protocol header
Mode 1	А		See Table 4-2
Mode 2	3		See Table 4-1
Satellite Used	07		Sv on Channel 1
Satellite Used	02		Sv on Channel 2
Satellite Used			Sv on Channel 12
PDOP	1.8		Position Dilution of Precision
HDOP	1.0		Horizontal Dilution of Precision
VDOP	1.5		Vertical Dilution of Precision
Checksum	*33		
< CR > < LF >			End of message termination

Table 4 GSA Data Format

Value	Description	
1	Fix not available	
2	2D	
3	3D	

|--|

Value	Description			
М	Manual-forced to operate in 2D or 3D mode			
A Automatic-allowed to automatically switch 2D/3D				

GSV-GNSS Satellites in View

Table 5 contains the values of the following example:

\$GPGSV, 2, 1, 07, 07, 79, 048, 42, 02, 51, 062, 43, 26, 36, 256, 42, 27, 27, 138, 42*71\$GPGSV, 2, 2, 07, 09, 23, 313, 42, 04, 19, 159, 41, 15, 12, 041, 42*41

Name	Example	Units	Description
Message ID	\$GPGSV		GSV protocol header
Number of	2		Range 1 to 3
Messages ¹			
Messages Number ¹	1		Range 1 to 3
Satellites in View	07		
Satellite ID	07		Channel 1(Range 1 to 32)
Elevation	79	degrees	Channel 1(Maximum 90)
Azimuth	048	degrees	Channel 1(True, Range 0 to 359)
SNR (C/No)	42	dBHz	Range 0 to 99, null when not
			tracking
Satellite ID	27		Channel 4(Range 1 to 32)
Elevation	27	degrees	Channel 4(Maximum 90)
Azimuth	138	degrees	Channel 4(True, Range 0 to 359)
SNR (C/No)	42	dBHz	Range 0 to 99, null when not
			tracking
Checksum	*71		
< CR > < LF >			End of message termination

Table 5 GGA Data Format

¹Depending on the number of satellites tracked multiple messages of GSV data may be required.

RMC-Recommended Minimum Specific GNSS Data

Table 6 contains the values of the following example:

\$GPRMC, 161229.487, A, 3723.2475, N, 12158.3416, W, 0.13, 309.62, 120598, ,*10

Name	Example	Units	Description
Message ID	\$GPRMC		RMC protocol header
UTC Position	161229.487		hhmmss.sss
Status	А		A=data valid or V=data not valid
Latitude	3723.2475		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.3416		dddmm.mmmm
E/W Indicator	W		E=east or W=west
Speed Over Ground	0.13	knots	

Table 6 GGA Data Format

RoyalTek 鼎天國際股份有限公司

Course Over	309.62	degrees	True
Ground			
Date	120598		ddmmyy
Magnetic Variation		degrees	E=east or W=west
Checksum	*10		
< CR > < LF >			End of message termination

VTG-Course Over Ground and Ground Speed

Table 7 contains the values of the following example:

\$GPVTG, 309.62, T, , M, 0.13, N, 0.2, K*6E

Name	Example	Units	Description
Message ID	\$GPVTG		VTG protocol header
Course	309.62	degrees	Measured heading
Reference	Т		True
Course		degrees	Measured heading
Reference	М		Magnetic
Speed	0.13	knots	Measured horizontal speed
Units	N		Knots
Speed	0.2	km/hr	Measured horizontal speed
Units	к		Kilometer per hour
Checksum	*6E		
< CR > < LF >			End of message termination

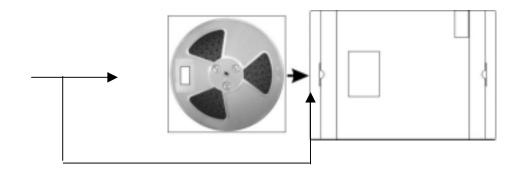
Table 7 VTG Data Format

RoyalTek ^{鼎天國際股份有限公司}

GPS Receiver User's Tip

- GPS signal will be affected by weather and environment conditions, thus suggest to use the GPS receiver under less shielding environments to ensure GPS receiver has better receiving performance.
- 2. When GPS receiver is moving, it will prolong the time to fix the position, so suggest to wait for the satellite signals to be locked at a fixed point when first power-on the GPS receiver to ensure to lock the GPS signal at the shortest time.
- 3. The following situation will affect the GPS receiving performance:
 - a. Solar control filmed windows.
 - b. Metal shielded, such as umbrella, or in vehicle.
 - c. Among high buildings.
 - d. Under bridges or tunnels.
 - e. Under high voltage cables or near by radio wave sources, such as mobile phone base stations.
 - f. Bad or heavy cloudy weather.
- 4. If the satellite signals can not be locked or encounter receiving problem (while in the urban area), the following steps are suggested:
 - a. Please plug the external active antenna into GPS receiver and put the antenna on outdoor or the roof of the vehicle for better receiving performance.
 - b. Move to another open space or reposition GPS receiver toward the direction with less blockage.
 - c. Move the GPS receiver away from the interferences resources.
 - d. Wait until the weather condition is improved.
- 5. While a GPS with a backup battery, the GPS receiver can fix a position immediately at next power-on if the build-in backup battery is full-recharged.

REB-3310 Operational Manual



MTBP Estimation

MTBF > 10000 hours

Package Specification and Order Information

Shipment Method: Tape and reel

Contact Information Section

Web Site: http://www.royaltek.com

. Web Site Customer Service: http://www.royaltek.com/contact

Revision History

Title	REB-3310 GPS Receiver Module			
Doc Type	User Manual			
Revision Number	Date Author Change notice			
0.9	April 6, 2005	Ben Initial version		
0.91	April 6, 2005	Ben Add TTFF specification		
1.0	April 7, 2005	Ben	Some correction and P13, Add "GPIO 0 support continuous power mode only"	